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1 Introduction 
 
Many studies in corpus linguistics and related disciplines aim to determine the 
characteristic aspects of a language, a particular genre, a group of speakers, an 
individual speaker or a linguistic process. In order to do so, they compute certain 
numerical quantities from an available text sample (i.e., a corpus) and extrapolate 
them to the full language (genre, speaker, process, etc.), or at least to much larger 
samples. For example, a corpus linguist might use the Brown and LOB corpora in this 
way to draw inferences about the differences between American and British English; 
a stylometrist might count the different words in the Shakespeare canon in order to 
estimate the richness of his vocabulary; and a morphologist might try to determine 
whether a certain word formation process is more productive than another by 
comparing the number of nonce words formed by each of the processes. 
 
Some of the numerical quantities used by such studies tend to be very stable across all 
but the smallest sample sizes, so that they can be reliably estimated from any given 
corpus (typical examples are average word and sentence length). Other quantities, 
however, change systematically with the sample size even for large samples such as 
the 100 million words of the British National Corpus. In order to compare samples of 
different sizes or to make generalizations about the full language, it is thus necessary 
to extrapolate their observed values to much larger samples. In this study, we focus on 
two quantities that play a central role in the examples listed above: the number of 
distinct word types (the vocabulary size V) and the number of hapax legomena (types 
occurring just once, V1) in a sample of N word tokens. The vocabulary size V and the 
type-token ratio V/N are often used to measure vocabulary richness and lexical variety 
in stylometry, authorship attribution, language acquisition and similar fields (see, e.g., 
Youmans 1990; Chipere et al. 2004). In morphology, an established measure for the 
productivity of a word formation process is Baayen’s productivity index p = V1/N 
(Baayen 1991), which is based on the number of hapax legomena. 
 
The most sophisticated techniques for predicting vocabulary growth (i.e., the 
development of V and V1 for increasing sample size N) rely on statistical models of 
the distribution of word frequencies (Baayen 2001). Once the parameters of these 
models have been estimated from the observed text sample, they can be used to 
extrapolate V and V1 to arbitrary sample sizes. Following Baayen’s terminology, we 
refer to these models as LNRE models, which stands for Large Number of Rare 
Events. Recently, two open-source toolkits have become available that implement a 
number of LNRE models: LEXSTATS 
(http://www.mpi.nl/world/persons/private/baayen/software.html) and the UCS toolkit 
(http://collocations.sf.net/). It is natural to ask whether these toolkits can be used by 
researchers as off-the-shelf implementations for extrapolating V and V1, and more 
generally, how useful and accurate the underlying statistical models are. 
 
In the original publications, LNRE models are evaluated by computing their 



goodness-of-fit with respect to the observed distribution of word frequencies (Baayen 
2001:118ff) or by comparing the predicted vocabulary sizes for smaller samples (than 
the one used for parameter estimation) to the observed growth curve (e.g., Baayen 
2001:88). Other researchers have based their assessment on how well predictions 
made by the models agree with human intuitions (e.g., Lüdeling and Evert 2003). 
Surprisingly, to our knowledge no direct evaluation of the extrapolation quality of 
different LNRE models has ever been carried out, even though this can be done in a 
straightforward and intuitive way. The purpose of the present paper is to fill this gap 
at least partially, with a comparison and discussion of the LEXSTATS and UCS 
models applied to data sets of various kinds. 
 
In our experiments, we estimate the model parameters on a subset of the respective 
corpus or data set comprising only the first N0 tokens (e.g., the first 50%, 25% or 
10%). This allows us to compare the extrapolated vocabulary growth for each model 
directly to the true vocabulary growth up to the full corpus size of NF. For instance, 
using the first 25% of the data for parameter estimation (i.e., N0=NF/4) we can 
evaluate extrapolation quality up to 4 times the estimation size N0. We apply the 
LNRE models in a number of plausible real-life settings, ranging from small manually 
cleaned data sets to large text collections with fully automatic processing. The present 
paper presents a qualitative evaluation based on visual inspection of the predicted and 
observed growth curves for V and V1. The empirical inadequacy of current LNRE 
models becomes clear enough from these plots, so that a more detailed quantitative 
evaluation is not called for at this time. 
 
The rest of the paper is structured as follows: In Section 2, we briefly describe the 
theoretical foundations of LNRE models and introduce the specific models 
implemented by the LEXSTATS and UCS toolkits. In Section 3, we explain the 
experiments that we have performed and describe the data sets we have used. Sections 
4, 5 and 6 present the results of these experiments. Finally, Section 7 summarizes our 
conclusions and makes some suggestions for further research. 
 
2 Statistical models of word frequency distributions 
 
The standard approach to modelling vocabulary growth is to assume that the observed 
corpus or data set is a random sample from a population of word types with associated 
occurrence probabilities. If the distribution of these probabilities is known, the 
expected vocabulary size V and number of hapax legomena V1 can be calculated for 
any sample size N (Baayen 2001:41–51). A (parametric) LNRE model is then simply 
a formula that describes the distribution of occurrence probabilities in the population. 
Most LNRE models have between one and three parameters that determine the 
precise shape of this distribution. The process of adjusting these parameters to match 
the distribution of word frequencies in the observed corpus is referred to as parameter 
estimation. It is usually followed by an evaluation of the model’s goodness-of-fit, 
which measures how well the shape of the probability distribution could be brought 
into agreement with the observed data (see Baayen 2001:118–122 for details). While 
goodness-of-fit is important as an indicator of the appropriateness of a given LNRE 
model, it is not necessarily a measure of extrapolation quality (although it is tempting 
to assume a close relationship between the two).  
 
The most well-known LNRE model is Zipf’s law (Zipf 1949), which stipulates that 
the probability pn of the a word type w is inversely proportional to its Zipf rank n, i.e., 
the rank of w in a list of all word types ordered by decreasing frequency. An extension 



of this model leads to a general power-law relationship expressed by the equation 
pn=C·n-α, with α ranging from 1 to 2 and a C normalizing constant that ensures that 
probabilities add up to one. A further extension, the Zipf-Mandelbrot law, is 
implemented by the ZM and fZM models that are part of the UCS toolkit (Evert 
2004). While the ZM model assumes a population with an infinite number of types, 
the fZM introduces population diversity (i.e., the finite number of types) as an 
additional parameter of the model. 
 
An intuitively unrealistic aspect of the fZM model (which it shares with the original 
form of Zipf’s law) is that it simply cuts off the power law after a certain number of 
types. This implies a probability threshold for words, with many types having 
occurrence probabilities slightly above the threshold but none at all below. The GIGP 
model (see Baayen 2001:89–93) is a more sophisticated implementation of the Zipf-
Mandelbrot law, which adjusts the probabilities of the lowest-frequency types in order 
to obtain a smoother distribution. In addition to GIGP, the LEXSTATS software also 
implements a model based on a lognormal distribution of the type probabilities (see 
Baayen 2001:82–88), as well as several other models that are not LNRE models in a 
strict sense (Baayen 2001:94–118). These models, most notably the Yule-Simon law, 
do not specify a probability distribution for the population, but user other techniques 
to extrapolate V and V1 from the observed data. 
 
In a comparative evaluation of the latter models based solely on their goodness-of-fit, 
Baayen (2001:124–131) notes that the lognormal model gives good results for small 
data sets, while GIGP is superior for larger sample sizes (up to 6 million tokens). 
Overall, the Yule-Simon model seems to achieve the best goodness-of-fit independent 
of corpus size. Evert (2004) evaluates the ZM and fZM models in a similar manner on 
larger data sets (up to 48 million tokens). His findings indicate that the fZM model is 
far superior to ZM, and similar in quality to the best models implemented in the 
LEXSTATS package. It has to be emphasized once again that these results per se tell 
us nothing about the extrapolation quality of the models.  
 
3 Experiments 
 
3.1 Data sets used for the comparison 
 
In our experiments, we used the following corpora and data sets, which represent a 
number of typical situations that a researcher is likely to encounter in real-life studies:  
 
• The British National Corpus (BNC): a balanced corpus of approximately 100 

million words of written and spoken British English from the years 1975–1994 
(Aston and Burnard 1998). 

• The Lancaster-Oslo/Bergen corpus (LOB): a balanced corpus of approximately 
1 million words of written British English from 1960, designed as an analogue to 
the Brown corpus (Johansson et al. 1978). 

• Süddeutsche Zeitung (SZ): a collection of German newspaper articles from 
several volumes of the Süddeutsche Zeitung, with a total of more than 250 million 
words. 

• The JP Web corpus: approximately 3.5 million words of text obtained by 
crawling Japanese Web pages (Ueyama and Baroni 2005). 

• German suffix data: manually corrected occurrences of German adjectives 
formed by the suffixes –bar and –lich in a collection of German newspaper 
articles from two volumes of the Stuttgarter Zeitung (Evert and Lüdeling 2001). 



 
Except for the German suffix data, we computed frequency distributions and 
vocabulary growth for all word forms in the corpora. The tokens in the BNC, LOB 
and SZ corpora were normalized to lowercase, and simple regular expressions were 
applied to filter out numbers, punctuation marks and other non-linguistic “junk” (we 
also ran preliminary experiments with a lemmatized version of the BNC but did not 
further pursue this avenue because the results did not differ considerably from those 
obtained for word forms). The Japanese corpus was tokenized with ChaSen 
(Matsumoto et al. 2000) and all words containing non-Japanese characters were 
discarded. 
 
The four corpora and the suffix data sets were chosen in order to illustrate a number 
of typical scenarios arising in corpus-based studies: small and restrictive lists of 
manually cleaned data (the suffix data sets); a relatively small and clean sample of 
language data (the LOB); a larger and more varied balanced corpus (BNC); and a 
very large and noisy collection of texts from a single source (SZ). We also conducted 
some experiments with a 380 million word collection of Italian newspaper articles, 
which gave results that are similar to those reported for the BNC but caused 
considerable computational problems for the LEXSTATS tools. Finally, the JP Web 
corpus illustrates both the increasingly common usage of the Web as a source of 
corpus data and, more importantly, how the models handle a language that is 
typologically very different from the Indo-European family. Table 1 lists the sample 
size NF and vocabulary size VF for each of the data sets (notice that these are sizes 
computed after data-cleaning, and thus in some cases they are considerably smaller 
than those reported above). 
 

Data set Sample size N Vocabulary size V 

Suffix –bar 36,164 544 

Suffix –lich 278,364 3,120 

LOB 994,469 44,485 

BNC 96,903,342 487,221 

SZ 226,147,264 2,584,543 

JP Web 2,175,736 137,060 
 

Table 1. Descriptive statistics (sample size and vocabulary size) for the data sets used in the 
experiments. 

 
3.2 Experimental procedure 
 
We applied all LNRE models described in Section 2 to the data sets listed above, 
using the implementations provided by the LEXSTATS and UCS packages. In 
general, we relied on the default settings for parameter estimation. Although 
goodness-of-fit can sometimes be improved considerably by hand-tuning this 
procedure, most researchers will lack the necessary experience and are more likely to 
use the packages as off-the-shelf solutions. The only changes we made are to use the 
cost function C2 rather than the default function C1 for parameter estimation of the 
LEXSTATS models (Baayen 2001:123), wherever this was appropriate and 
computationally feasible. Our rationale for this is that C2 uses more information from 
the training data, so we expect it to result in better fits than the default C1 estimation 
scheme, which relies solely on the three quantities N, V and V1. For this same reason, 



however, C2 is more likely to break down than C1, especially on the larger data sets. 
In addition, we initialized the parameter estimation procedure for the lognormal 
model with hand-tuned values since the default settings led to very poor goodness-of-
fit. 
 
For each model and each data set, we ran experiments with five different estimation 
sizes N0, using the first 75%, 50%, 25%, 10% and 1% of the available data, 
respectively. The results of these experiments are reported in Section 4. In most cases, 
we focus on the runs with N0=N/2 (50%) and N0=N/4 (25%), which are the most 
interesting situations. Extrapolation quality rapidly degrades when less than 25% of 
the data are used for estimation. In Section 5, we repeat all experiments on 
randomized versions of the data sets in order to study the influence that violations of 
the randomness assumption underlying all LNRE models have on the predicted 
vocabulary growth. Finally, we use the models to extrapolate the number of hapaxes 
V1 in Section 6, which is particularly relevant for studies of (morphological) 
productivity.  
 
Although we performed the experiments with all available LNRE models, we only 
report the results of GIGP, lognormal, ZM and fZM for reasons of clarity and space. 
The LEXSTATS package implements two versions of the GIGP model, of which we 
used the more general one. The Yule-Simon model performed considerably worse 
than lognormal and GIGP (with a few exceptions). Another model from the same 
family (referred to as the Zipf model in LEXSTATS) showed equally bad 
performance and its implementation broke down for the larger sample sizes. The 
reader interested in these models is welcome to ask us for the relevant data sets and 
results. 
 
4 Results for the extrapolation of V 
 
4.1 All word forms (BNC, LOB, SZ, JP Web) 
 
The results of our experiments are presented in the form of intuitively understandable 
vocabulary growth curves, i.e., plots of vocabulary size V against sample size N as 
illustrated in Figure 1 for the BNC data. For the panel in the top row, the first 25% of 
the 96 million BNC tokens were used for parameter estimation (i.e., N0 = 24 million), 
indicated by a vertical line in the plots. Note that the numbers on the x-axis refer to 
millions of tokens (M) – or thousands of tokens (k) in some of the later plots – and 
those on the y-axis to thousands of types (k). This experiment simulates a situation 
where vocabulary growth has to be extrapolated from an observed corpus of 24 
million tokens. The part of the growth curves to the right of the vertical line represent 
the predictions of the various LNRE models up to 4 times the estimation size N0 (also 
referred to as the expected growth curves) and compare them with the actual 
vocabulary growth through the remaining 72 million tokens of the BNC (the observed 
growth curve, labelled “Corpus” in the plots). The part of the curves to the left of the 
vertical line represents the information that would be available to the researcher for 
assessing the quality of an LNRE model, either by calculating goodness-of-fit or by 
visual comparison of the interpolated vocabulary growth according to the model with 
the observed growth curve up to N0 (cf. Section 4.3). 
 



 
Figure 1. Extrapolated vocabulary growth curves for the BNC data. 

 
Taking a closer look at Figure 1, we see that for extrapolation from 25% of the data, 
all models underestimate the true vocabulary growth substantially. While GIGP, ZM 
and fZM are virtually indistinguishable, lognormal gives slightly worse results than 
the other three models. Naturally, the accuracy of the prediction degrades with greater 
extrapolation distance. When the models are estimated on 50% of the data (bottom 
row), the performance of the models improves considerably, although they still do not 
coincide fully with the true vocabulary growth curve in the last 25% of the corpus. 
Here, the observed curve shows a distinct irregularity in the form of a hump, i.e. faster 
vocabulary growth than in previous parts of the corpus. This phenomenon is 
explained by the fact that the spoken parts of the BNC are concentrated at the end of 
the corpus, where suddenly new words from spoken English are injected into the 
vocabulary. It is hardly surprising that the LNRE models, which were trained only on 
written English, are unable to predict the vocabulary growth of spoken English 
accurately. A similar hump in the observed growth curve appears after the first 25% 
of the corpus, which explains why the models in the top row perform considerably 
worse than those in the bottom row, even when we consider only extrapolation up to 
2N0. In Section 5, we will take a closer look at the extent to which the non-random 
arrangement of texts in a corpus (and of words within the texts) affects the LNRE 
models.  
 
Of course, the extrapolated growth curves show the expected value of V according to 
each model, which can be interpreted as average values across many different random 
samples. Part of the discrepancy between them and the observed curve may thus be 
explained by random variation in the one particular language sample (namely the 
BNC) that we used as a basis for our experiments. While it should be immediately 
obvious from the top row of Figure 1 that we are dealing with systematic 
underestimation rather than random effects, we have also calculated confidence 
intervals for V based on the standard deviation predicted by the LNRE models. Due to 
the large sample sizes of millions of tokens that we are dealing with, these confidence 
intervals are so small as to be indistinguishable from the expected growth curves, 
even at a confidence level of 99.9%. Consequently, we have omitted them from the 
plots and note that extrapolation errors can by no means be attributed to random 
effects. 
 



 
Figure 2. Extrapolated vocabulary growth curves for the BNC data, with estimation sizes ranging from 

10% to 75%. 
 
In Figure 1 and most of the rest of the paper, we only present results for LNRE 
models estimated from 25% and 50% of the available data, respectively. We chose 
these two settings since they give a good impression of the general trends, and quite 
often the step from 25% to 50% constitutes the “boundary” between extrapolation 
results that are clearly off-the-mark and results that are at least qualitatively plausible. 
It is hardly surprising that extrapolation from a 10% sample, shown in the bottom 
right panel of Figure 2, confirms the negative trend and magnifies the differences 
between the curves (note that the curves for ZM and fZM, which are similar to those 
of the GIGP model, were omitted from the plots to save space). At 10 times the 
estimation size, the extrapolated vocabulary growth curves have little in common with 
the true growth curve any more, especially for the lognormal model. In the opposite 
direction, extrapolation from 75% of the data shows very good agreement with the 
observed curve, but is of little practical relevance (because extrapolation goes only 
from 72.6 million tokens to 96.9 million tokens, i.e. 33% beyond the estimation size). 
 

 
Figure 3. Extrapolated vocabulary growth curves for the LOB data. 

 
Figure 3 presents extrapolation results for the LOB corpus, which is much smaller 
than the BNC and more homogeneous (because it does not contain spoken English). 



Despite these differences, the overall trends are similar to those encountered for the 
BNC, indicating that the accuracy of the model predictions depends more on how far 
the growth curves are extrapolated beyond the estimation size than on the absolute 
amount of training data used. There are two interesting aspects of the LOB data: the 
GIGP and lognormal models are practically indistinguishable, and the ZM-based 
extrapolation is spot on for an estimation size of 25%, where it is also much better 
than the fZM model. This observation is quite surprising, considering that Evert 
(2004) reports far superior goodness-of-fit for the fZM model (which is an extension 
of ZM and should thus always perform equal to or better than the latter). 
 

 
Figure 4. Extrapolated vocabulary growth curves for the LOB data, with estimation sizes ranging from 

1% to 50%. 
 
In order to find out whether this trend continues for even smaller estimation sizes, the 
plots in Figure 4 compare the ZM and fZM models estimated on as little as 1% of the 
full corpus data (i.e., only 10,000 tokens of text). Astonishingly, the ZM model still 
achieves an excellent prediction of the true vocabulary growth, while the fZM quality 
degrades quickly. In the bottom right panel, the fZM model even predicts that the 
total vocabulary of written British English contains less than 10,000 word form types. 
Since the surprising accuracy of the ZM model cannot be replicated in the 
experiments with other corpora, it has to be regarded as a “freak accident” for this 
particular data set. In Section 5, we will have a look at the role that the non-random 
order of texts in the LOB plays in this context (e.g., we gather from the manual that 
all the humour appears at the end of the corpus). 
 



 
Figure 5. Extrapolated vocabulary growth curves for the SZ data. 

 
The SZ corpus can be seen as the opposite of the LOB in terms of size (more than 200 
million tokens), cleanness (fully automatic processing with off-the-shelf tools), and 
diversity (articles from a single newspaper only). From the plots in Figure 5 we see 
that this kind of “big and noisy” data set is much more amenable to LNRE modelling 
than a balanced language sample such as the LOB or BNC. One possible reason for 
this result is that in the newspaper data, different text types and genres are mixed (the 
articles being ordered by publication date) rather than lumped together at the 
beginning or end of the corpus (as it was the case with BNC and LOB). This 
explanation is supported by the much smoother shape of the observed vocabulary 
growth curves for the SZ data. Apart from the better overall results, the general trends 
that we have encountered in the BNC are confirmed: GIGP, ZM and fZM achieve 
very similar extrapolation quality (recall that all three are based on the Zipf-
Mandelbrot law), and are considerably better than the lognormal model. All models 
have a tendency to underestimate the true vocabulary growth, which becomes more 
pronounced for smaller estimation sizes (as do the differences between individual 
models). 
 

 
Figure 6. Extrapolated vocabulary growth curves for the JP Web data. 

 
The good results obtained on the relatively noisy SZ corpus are encouraging for an 



application of the models to language data collected from the Web, such as the JP 
Web corpus. However, the observed vocabulary growth curve of this corpus has a 
very unusual shape that is almost a straight line (see Figure 6). After a short initial 
phase (comprising roughly the first 500,000 tokens), the vocabulary continues to grow 
at a constant rate (while all the growth curve plots in Baayen (2001) and similar 
publications show a concave shape with decreasing slope). All four LNRE models 
underestimate this untypical growth curve considerably, with fZM delivering the 
worst performance. It is not clear yet whether this phenomenon is a consequence of 
the typological differences between Japanese and the European languages, or whether 
it has to do with the fact that word boundaries are not marked orthographically in 
Japanese and are often difficult to establish by other means (cf. Ha et al. 2002). For 
the JP Web corpus, word units were determined in a fully automatic way by the 
ChaSen tokenizer. 
 
4.2 Suffix data sets (–bar, –lich) 
 
We turn now to the two German suffix data sets of Evert and Lüdeling (2001). Unlike 
the previous examples where the goal was to model the frequency distribution of all 
word forms in a corpus, these data sets were created for a much more narrowly 
defined purpose, namely measuring and comparing the productivity of the German 
adjective-forming suffixes –bar and –lich. Consequently, they are much smaller than 
the data sets in Section 4.1 and have undergone extensive manual corrections, so that 
the remaining data represent a specific linguistic phenomenon (a word-formation 
process) rather than a broad mixture of factors that contribute to the overall 
vocabulary growth in a corpus. 
 

 
Figure 7. Extrapolated vocabulary growth 

curves for the –bar suffix data. 

 
Figure 8. Extrapolated vocabulary growth 

curves for the –bar suffix data, with estimation 
sizes ranging from 1% to 50%. 

 
Figure 7 presents the extrapolation results for the –bar data set. Note the absence of 
the lognormal model from the left column, which is due to the failure of the 
estimation procedure implemented for this model in the LEXSTATS package. The 
other three models achieve very good extrapolation accuracy, with ZM and fZM 
being spot on for an estimation size of 25%. These results are very encouraging, since 
one of the main goals of any quantitative study of morphological productivity is to 
predict the rate at which new words are created by a word-formation process. 



 
 
Figure 8 shows that even when extrapolating to 10 times the estimation size, the 
accuracy of the predictions degrades gracefully (bottom left panel), allowing 
researchers to compare the productivity of morphological processes even when the 
corresponding sample sizes differ substantially. The drastic overestimation seen in the 
bottom right panel is hardly surprising, since the parameter estimates are based on a 
sample containing only 360 tokens in this case. 
 

 
Figure 9. Extrapolated vocabulary growth curves for the –lich suffix data. 

 
Unfortunately, Figure 9 reveals that the high extrapolation quality for –bar is not 
shared by all morphological processes. When the models are applied to the –lich 
suffix data, we see the familiar underestimation pattern. Using any of the models to 
extrapolate beyond 4N0 would be highly dangerous. While the lognormal estimation 
does not fail in this case, it is completely off the mark for an estimation size of 25%. 
A blind use of this model, perhaps inspired by the good results that Baayen 
(2001:126) has obtained for data sets of similar size, would lead to the erroneous and 
counter-intuitive conclusion that the suffix –lich is completely unproductive. 
 
4.3 Predicting extrapolation quality 
 
Although our experiments show a common pattern of underestimation of the 
vocabulary growth and decreasing accuracy, depending on how far beyond the 
estimation size extrapolation is carried out, there are considerable differences between 
the four LNRE models and between the data sets. For instance, while the ZM model 
can be used to extrapolate from a small subset of the LOB to the full corpus (and 
presumably beyond), the other models perform considerably worse and would make 
entirely misleading predictions when estimated on 10% of the data or less. None of 
the models is able to predict the vocabulary growth of the BNC accurately. While 
these differences are obvious in our experiments, any real-life application will use all 
the available corpus data for parameter estimation (N0=NF) and extrapolate to even 
larger values of N. Since there is no empirical growth curve to which the model 
predictions could be compared, we have no way of knowing whether we can trust our 
LNRE model or whether we have chosen an infelicitous combination of model and 
data set. If we want to draw meaningful conclusions, we need a means for predicting 
extrapolation quality based on the data available for parameter estimation. 



 
The most straightforward solution is to compute the goodness-of-fit of a LNRE model 
after parameter estimation, i.e. how well the model matches the observed frequency 
distribution. Using a multivariate chi-squared test (Baayen 2001:118–122), we can 
compute a X2 value as a measure of goodness-of-fit, with smaller values indicating 
better agreement between expected and observed frequency distribution. It is natural 
to assume that better goodness-of-fit should lead to better extrapolation quality, so 
that we should use the model with the smallest X2 value for the extrapolation. 
However, for the LOB experiment with an estimation size of 10%, we obtain 
X2=6896.6 (df=14) for the ZM model compared to X2=472.8 (df=13) for the fZM 
model: even though the fZM has much better goodness-of-fit than the ZM model, its 
vocabulary growth extrapolation is fundamentally misleading while that of the ZM 
model is very accurate (cf. Figure 4). These findings are corroborated by the even 
better goodness-of-fit of the lognormal model (X2=98.4, df=14), whose extrapolation 
quality is similar to that of fZM (not shown in the plots). It is thus obvious that we 
cannot use goodness-of-fit as a predictor of extrapolation accuracy. 
 
An intuitively appealing alternative is to look at the interpolated vocabulary growth 
curves (i.e., the part of the curves to the left of the vertical line in our experiments) 
and compare them with the observed vocabulary growth up to the estimation size N0. 
Since the parameter estimation ensures that the models predict the correct vocabulary 
size V at N0, underestimation of V in the extrapolation should go hand in hand with 
overestimation in the interpolated part of the curve. This pattern is clearly visible for 
the BNC data in the top row of Figure 1. However, Figure 4 paints a different picture. 
While the interpolated curves of the ZM and fZM models are practically 
indistinguishable, their predictions for larger values of N are totally different. 
Moreover, at an estimation size of 25%, the ZM model overestimates vocabulary 
growth in the interpolated part, but its extrapolation is highly accurate nonetheless. 
Despite such counterexamples, this approach is much more promising as a predictor 
of extrapolation accuracy than goodness-of-fit. 
 
5 Results for randomized data sets 
 
As has been pointed out in Section 2, all the LNRE models in our evaluation assume 
that the observed corpus is a random sample from a population of word types. Of 
course, this assumption is unrealistic for natural language and the causes and 
consequences of non-randomness are discussed at length in the technical literature on 
LNRE models (see Baayen 2001:161–173). In order to assess the influence of non-
randomness on the extrapolation quality of our models, we have repeated the 
experiments reported in Section 4 on randomized versions of the data sets (i.e., the 
tokens have been re-arranged in random order for each data set). 
 



 
Figure 10. Comparison of vocabulary growth in randomized and non-randomized versions of the BNC, 

SZ, JP Web and –bar data sets. 
 
Figure 10 compares the original and randomized versions of some of the data sets, 
giving a first indication to what extent non-randomness affects the growth curves. The 
BNC and JP Web data sets, both of which were problematic for the LNRE models, 
show strong non-randomness effects. The much smoother growth curves of the SZ 
corpus differs only slightly from the randomized version, and for the –bar suffix data 
there is no visible difference (that cannot be explained by random variation). A 
possible explanation for the high degree of randomness in the –bar data can be found 
in the relatively small number of tokens and their “sparse” distribution across the 
corpus, where they are unlikely to lump together in a single article. Figure 10 
indicates that violations of the randomness assumption may well be the cause for 
underestimation on the BNC and JP Web corpora, whereas the other two data sets 
should not be affected. To test this hypothesis, the figures below compare 
extrapolation performance on the randomized and original versions of the four data 
sets, at an estimation size of 25%. 
 

 
Figure 11. Comparison of extrapolation 

accuracy for randomized and non-randomized 
versions of the BNC corpus. 

 Figure 12. Comparison of extrapolation 
accuracy for randomized and non-randomized 

versions of the JP Web corpus. 
 
 



Figure 11 and Figure 12 confirm our expectations. On the randomized version of the 
BNC, all models except lognormal show excellent extrapolation quality. For the JP 
Web data, the results are also very good. Interestingly, the fZM model now performs 
much better than the ZM model, in line with its better goodness-of-fit (X2=167.9, 
df=13 vs. X2=5374.0, df=14). 
 

 
Figure 13. Comparison of extrapolation accuracy for randomized and non-randomized versions of the 

SZ corpus. 
 
Although Figure 10 showed hardly any visible differences between the randomized 
and the original vocabulary growth curve of the SZ corpus, suggesting that there are 
no serious violations of the randomness assumption, all models achieve much better 
extrapolation performance on the randomized version of the corpus (Figure 13). 
Again all models except lognormal give an excellent prediction of the true vocabulary 
growth. 
 
Our preliminary conclusion at this point is that a substantial (if not the largest) part of 
the extrapolation problems reported in Section 4 can be attributed to non-randomness 
of the corpus data. On randomized data sets, most LNRE models give an excellent 
approximation to the true vocabulary growth up to 4N0. Moreover, the better 
extrapolation quality of the ZM model compared to fZM seems to stem from a greater 
robustness against non-randomness. On the randomized data, fZM is as good as or 
even better than ZM. Further evidence comes from the LOB corpus (see Figure 4, 
randomized version not shown here). The astonishing accuracy of the ZM model on 
the original corpus gives way to serious overestimation when the data are randomized, 
confirming our assumption that it was a “freak accident”. The fZM model performs 
distinctly better than ZM now, and the GIGP model achieves excellent results. 
 



 
Figure 14. Comparison of extrapolation accuracy for randomized and non-randomized versions of the –

bar suffix data. 
 
Finally, Figure 14 presents the results for the randomized –bar suffix data set. Since 
there was no visible difference between the original and randomized vocabulary 
growth curves and since the ZM and fZM models achieved excellent extrapolation 
quality, we would not expect randomization to have substantial effects. Surprisingly, 
though, the extrapolation accuracy deteriorates for all three LNRE models (recall that 
the estimation procedure for the lognormal model failed on this data set). This as yet 
unexplained result demonstrates clearly that not all extrapolation problems can be 
attributed to non-randomness in the data, which sometimes seems to counterbalance 
other inadequacies of the LNRE models. 
 
6 Results for the extrapolation of V1 
 
So far, our experiments have concentrated on the development of the vocabulary size 
V for increasing sample size N. In addition to V, the number V1 of hapaxes also plays 
an important role for studies of morphological productivity and vocabulary richness 
(e.g., Baayen’s (1991) productivity index p = V1/N). In this section, we present results 
on the accuracy of the extrapolation of V1 for selected data sets. 
 



 
Figure 15. Extrapolation of the number of 

hapaxes for the BNC data. 

 
Figure 16. Extrapolation of the number of 

hapaxes for the LOB data. 
 
Figure 15 and Figure 16 show that extrapolation quality is considerably lower for the 
number of hapaxes V1 than for the vocabulary size V. For the LOB corpus with an 
estimation size of 25%, the extrapolated curve according to the fZM model has a 
maximum at around 500,000 tokens and begins to fall afterwards, (wrongly) 
indicating that the corpus leaves the LNRE zone (Baayen 2001:55) where the 
distribution of word frequencies follows Zipf’s law. 
 

 
Figure 17. Extrapolation of the number of 

hapaxes for the –bar suffix data. 

 
Figure 18. Extrapolation of the number of 

hapaxes for the –lich suffix data. 
 
Since the extrapolation of hapax counts is of particular importance for morphological 
productivity, we show the results for both German suffix data sets in Figure 17 and 
Figure 18. While the predictions made by the ZM and fZM models are fairly accurate 
for the –bar data, they are at best qualitatively acceptable as an indication of the 
overall trend (suggesting a productive process) for the –lich data. However, the most 
worrying aspect of these experiments is that extrapolation quality seems to break 
down suddenly when the estimation size becomes too small (which is often the case 
for highly restricted data such as morphological affixes). This happens to the GIGP 
model on the –bar data (at N0=9,050; top left panel in Figure 17) and to the 



lognormal model on the –lich data (at N0=69,600; top left panel in Figure 18), which 
suddenly indicate an unproductive process or an unrealistically low degree of 
productivity. Without evidence from further experiments, we have to assume that this 
is not a particular weakness of the GIGP and lognormal models, but that we would 
find the same behaviour with ZM and fZM on other morphological data sets 
(especially considering the fact that fZM is mathematically very similar to the GIGP 
model). Consequently, at the current time LNRE models seem to be entirely unusable 
for the extrapolation of quantitative measures of morphological productivity that are 
based on the number of hapaxes. 
 
7 Conclusions and directions for further work 
 
In this paper, we have tested the extrapolation accuracy of four widely-used LNRE 
models empirically, by estimating their parameters on a subset of a given corpus and 
comparing the true vocabulary growth for the rest of the corpus with the growth 
curves predicted by the models. Using six different data sets that cover a range of 
typical real-life situations, our overall conclusion is that most of the models (with the 
exception of lognormal) provide a plausible extrapolation of the vocabulary size V up 
to 2 times the size N0 of the estimation corpus, and in many cases they at least capture 
the right trend up to 4 times N0. The best results were often achieved by the GIGP and 
ZM models. Extrapolation accuracy is much lower for the number of hapaxes V1, 
rendering the current models unusable for studies of morphological productivity. 
 
While LNRE models are a powerful and important tool for quantitative studies related 
to the distribution of word frequencies, vocabulary diversity and morphological 
productivity, it is obvious that improvements over the current state of the art are 
urgently needed. Our experiments with randomized data sets in Section 5 suggest that 
the inaccuracy of the extrapolated growth curves is to a large part caused by non-
random ordering of tokens in the corpus (but not all errors of the models can be 
blamed on non-randomness). Of course, randomization is not an option in real studies, 
where all the available corpus data are used for parameter estimation. Therefore, the 
logical next step in LNRE research is to develop models that can detect, and correct 
for non-randomness in the training data. Baayen (2001) suggests a range of 
parameter-adjusted models and mixture models for this purpose, which are also 
implemented in the LEXSTATS package. However, these extensions add to the 
general slowness (in some of our experiments, parameter estimation and extrapolation 
took several hours to complete) and frailty of the LEXSTATS models and depend 
crucially on hand-tuned parameter values. Similar extensions to the faster and more 
robust UCS models will hopefully turn out to be a viable alternative. 
 
In order to support theoretical and practical improvements of the LNRE models, 
further evaluation experiments will play a key role. We plan to extend our 
randomization experiments to the extrapolation of V1, as well as to consider a broader 
range of data sets and LNRE models in the evaluation (especially versions of the 
LEXSTATS models that adjust for non-randomness). Balanced corpora such as the 
BNC and LOB allow us to determine whether the relevant non-randomness effects 
depend on the arrangement of documents (which are grouped by genre etc.) or rather 
on term clustering within individual documents as has often been suggested (e.g. Katz 
1996). A final important question is whether the extrapolation quality of a given 
model on a given data set can be predicted in a reliable way, using only the part of the 
data available for parameter estimation. 
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