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1 Typical scenarios

• Do Brits use longer words than Americans?

• Are translated texts more collocational than original texts (according to
a certain “collocativity score” we can compute for each document)?

• How likely is it that the mean difference in performance of tagger A and
B in the 10 folds of our experiment was due to chance?

• Is the unstressed vowel derived from mid-high /o/ higher than the un-
stressed vowel derived from mid-low /O/?

• In general, any scenario in which we have samples of (independent) values
coming from two groups, and we wonder whether the differences we ob-
serve between the groups (e.g., in their means or medians) are significant
or due to chance.

2 The classic t-test

• The statistical reasoning and (some of the) mathematics involved is not
too complicated, but they would require a few hours by themselves, so I
assume you read the books and I will just discuss intuitions behind the
test, the necessary assumptions and how to do it in R.

2.1 The statistical setting

• You are interested in knowing whether two (hopefully random) samples
x1, x2, ..., xn and y1, y2, ....ym come from underlying populations having
the same or different distributions.

• E.g., the samples could be samples of word lengths from the Brown and
LOB, and the population distributions could be the “true” distributions
of word lengths in American and British English (whatever that means).
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• A population distribution is characterized by its class (normal, Poisson,
etc.) and a certain number of parameters – e.g., a mean µ and a variance
σ.

• However, we almost never know the mean and the other parameters of
the “true” populations – what we have are statistics we can compute from
our random samples – e.g., the standardized difference of the means of the
two samples.

• In turn, the difference of sample means will have its own distribution,
whose shape will depend on that of the underlying population.

• Then, we can make an hypothesis about the underlying population, and,
given what we know about the relation between the underlying population
distribution and the distribution of the statistic we can estimate from our
data, we can tell how likely our sample statistic would be if our hypothesis
about the underlying population was right.

• In the case in which we compare two groups, typically, the interesting
hypothesis is that the populations are different, but the tested null hy-
pothesis is that µx−µy = 0 (and thus we hope to find out that the sample
statistic value we got is very unlikely under the null hypothesis).

• In practice, the hypothesis testing steps (not only with t-test) are as follow:

– From our sample data, we compute a test statistic (a score), by plug-
ging various values we can extract from our data into a fixed formula.

– This test statistic has the characteristic that, under various assump-
tions, we know how likely the various values it takes are if the null
hypothesis is true, i.e., we can assign a p-value to the score obtained
in the previous step.

– The lower the p-value, the less likely it is that the data did indeed
come from the population hypothesized under the null hypothesis.

– In our case, the lower the p-value, the less likely it is that the two
population means are identical (i.e., that the µ of the population of
mean differences is 0), and thus the more likely it is that the two
samples come from different populations.

– It is up to the experimenter to decide how happy she/he is about the
p-value obtained – in statistical parlance, whether to accept or reject
the null hypothesis.

– Popular rejection thresholds are 0.05 and 0.01.1

• Important points:
1One should decide the rejection threshold before running the test. Also, notice that the p-

values to the gazillionth decimal point reported by statistical packages are not so meaningful,
since typically our measurements and the assumptions we made do not justify reporting a p-
value at such level of granularity. It makes more sense to report p < 0.01 than p = 0.0078342.
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– Were the assumptions necessary to interpret the test statistic truly
met? (Randomness and normality are serious issues in many corpus
linguistics settings.)

– Is the null hypothesis reasonable enough that rejecting it is an inter-
esting thing to do?

– What are the underlying “populations” we want to extend our results
to? (A HUGE issue in corpus linguistics!)

2.2 The t statistic for differences between means

• The classic t statistic:
t =

x̄− ȳ√
s2

x

Nx
+ s2

y

Ny

(1)

where x̄ and ȳ are the sample means, sx and sy are the sample standard
deviations and Nx and Ny are the sample sizes.

• If the assumption of normality of the distribution of the difference of
sample means holds (see 2.3 below), it can be shown through the magic
of mathematical statistics that, if the null hypothesis is true (there is no
difference between the population means), then t has a t-distribution with
µ = 0 and shape determined by the parameter ν (the degrees of freedom).

• The more the t we found is far from 0, the less likely it is that the true
difference between populations is 0.

• In the case in which we can assume that the two underlying populations
have the same variance, the parameter ν equals Nx + Ny − 2; in the case
in which we do not assume that the two underlying populations have the
same variance, the parameter ν must be derived from a more complicated
formula, but it still depends on the sample sizes (and on the variances).

• The t-distributions corresponding to lower ν’s are flatter, more spread-
out cousins of the standard normal distribution (i.e., extreme values of t
will have larger p-values than equivalent values of the standard normal
distributions, so that stronger evidence will be needed to reject the null
hypothesis).

• Indeed, you probably noticed that the formula to compute t is similar to
the one for calculating a z -score for the difference of sample means under
the hypothesis that the population difference is 0. We do not refer to a
standard normal distribution table because we do not know the true stan-
dard deviation of the differences between the means and we are estimating
it from the data. The flatness of the t-distribution is our “punishment”
for not using the true value of the standard deviation.
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• When the sample sizes – on which ν depends – are low, our sample-
based estimates of population parameters are less reliable, thus we are
more uncertain about the inferences, and thus we must refer to a flatter
t-distribution.

• For larger ν’s, the t-distribution becomes identical to the standard normal.

• How do x̄− ȳ, the s’s and the N ’s affect t?

• Notice that, because of the N ’s in the denominators of the denomina-
tor, for very large samples even uninterestingly small differences between
the means will produce high t values, and thus low p’s (a very concrete
problem with corpus data!)

2.3 Assumptions of the t-test

• The two samples must be random and independent (but see below on
paired t-test).

• Data for which mean computation is reasonable operation.

• The default R implementation does not require that the underlying pop-
ulations have equal variance; older implementations do.

• The variable X̄− Ȳ (distribution of the sample mean differences) must be
normally distributed, which will happen either when X and Y come from
normally distributed populations or when the sample sizes are large.

2.3.1 The central limit theorem

• This second way of meeting the normality condition is justified by the
mind-blowing central limit theorem, which, simplifying a lot, says that, as
N increases, the distribution of the means of samples of size N becomes
approximately normal (with same mean as underlying population, and
variance σ2/N .).

• Notice difference between distribution of underlying population and dis-
tribution of means of samples from the population: for large samples, the
latter becomes normal, no matter what the shape of the former is.

• It is instructive to see the central limit theorem “happening” in R.

> hist(runif(10000))
> qqnorm(runif(10000))
> u <- replicate(10000,mean(runif(5)))
> hist(u)
> u <- replicate(10000,mean(runif(10)))
> hist(u)
> u <- replicate(10000,mean(runif(15)))
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> hist(u)
> u <- replicate(10000,mean(runif(20)))
> hist(u)
> u <- replicate(10000,mean(runif(25)))
> hist(u)
> qqnorm(u)
...

• The more the underlying distribution is skewed, the higher N must be for
the central limit theorem to be applicable (does any very skewed distribu-
tion come to mind?)

• The central limit theorem happening more slowly with a skewed underly-
ing distribution:

> hist(rpois(10000,1))
> qqnorm(rpois(10000,1))
> u <- replicate(10000,mean(rpois(5,1)))
> hist(u)
> qqnorm(u)
> u <- replicate(10000,mean(rpois(10,1)))
> hist(u)
> u <- replicate(10000,mean(rpois(15,1)))
> hist(u)
> u <- replicate(10000,mean(rpois(20,1)))
> hist(u)
> u <- replicate(10000,mean(rpois(100,1)))
> hist(u)
> u <- replicate(10000,mean(rpois(500,1)))
> hist(u)
> qqnorm(u)

2.4 The t-test in R

> brown <- read.table("brown.stats",header=TRUE)
> lob <- read.table("lob.stats",header=TRUE)

> t.test(brown$se,lob$se)

Welch Two Sample t-test

data: brown$se and lob$se
t = -0.1416, df = 987.538, p-value = 0.8874
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.93277 4.26877
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sample estimates:
mean of x mean of y

99.152 99.484

# Notice:
# Confidence intervals
# Non-integer degrees of freedom: R’s default t-test does not
# assume equality of variances, and formula for nu in such
# case can lead to non-integer values

# Following is one-tailed test where alternative hypothesis
# is that Brown’s mean is smaller than LOB’s mean
# FOR DIDACTIC PURPOSES ONLY, NOT APPROPRIATE FOR
# SERIOUS BROWN/LOB COMPARISONS!

> t.test(brown$se,lob$se,alternative="l")

Welch Two Sample t-test

data: brown$se and lob$se
t = -0.1416, df = 987.538, p-value = 0.4437
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf 3.527977
sample estimates:
mean of x mean of y

99.152 99.484

> t.test(brown$towl,lob$towl)

Welch Two Sample t-test

data: brown$towl and lob$towl
t = 3.4416, df = 981.116, p-value = 0.0006026
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.03488570 0.12744478

sample estimates:
mean of x mean of y
4.271106 4.189941
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2.5 Other themes in t-testing

• Special form of t-test formula for paired samples (pairing will reduce vari-
ance)2 – Sara P’s tagging performance comparison data.

• Tests of the assumptions of normality and (if necessary) equal variance.

3 A non-parametric alternative:
The Mann-Whitney test

• No assumptions about population distributions and parameters.

• Works with data at least on ordinal scale.

• As with Spearman’s correlation, we transform the values of the two vari-
ables into ranks.

• Transforming scores into ranks reduces the space of possible outcomes we
have to take into account, and thus makes exact tests viable.

• In the case of Mann-Whitney, procedure is as follows:3

– Put x and y values in same table, order them, and assign rank.

– Separate x and y values again.

– Sum all ranks of x (but you could pick y and final result would be
the same).

– Subtract this sum from the maximum possible value that it could
take in theory (e.g., if both X and Y are samples of two values, the
maximum theoretical value for the sum of x ’s ranks is 4 + 3 = 7; if
the actual sum is 2 + 3 = 5, the test statistic is 7− 5 = 2).

– Count how many possible outcomes would give a result for this statis-
tic (known as U) that is as extreme or more extreme than the one
obtained empirically, with respect to the value of U that would be
obtained under the null hypothesis that ranks are equally spread be-
tween the two samples (the null hypothesis’ U can be calculated with
the formula (NxNy)/2).

– It can also be shown that, as the sample sizes increase, the sampling
distribution of the sum of ranks approximates a normal distribution,
and one can avoid the computational cost associated with the exact
testing approach by computing the appropriate z -scores.

2This has to do, in magic ways, with the fact that correlated variables have non-0 covari-
ance, and a term derived from covariance is subtracted from the sum of single population
variances when computing the variance and standard deviation of the differences between
sample means.

3Different procedures, leading to essentially equivalent statistics, are also found in the liter-
ature. The one I am reporting here is from http://faculty.vassar.edu/lowry/webtext.html.
R uses a different method to compute U .
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– Like with t-test, a paired sample version is available.
– Notice that Mann-Whitney test (or t-test, for that!) does not tell

us if the two populations have similar of different shapes – (to com-
pare overall shapes of distribution, consider test based on empirical
distribution function of the Kolmogorov-Smirnov type).

3.1 The Mann-Whitney test in R

# again, default is two-tailed alternative -- this time,
# I’m not even going to try one-tailed test for illustrative
# purposes, as medians/avg ranks are identical

> wilcox.test(brown$se,lob$se)

Wilcoxon rank sum test with continuity correction

data: brown$se and lob$se
W = 128498, p-value = 0.4437
alternative hypothesis: true mu is not equal to 0

> wilcox.test(brown$se,lob$se,exact=TRUE)

Wilcoxon rank sum test with continuity correction

data: brown$se and lob$se
W = 128498, p-value = 0.4437
alternative hypothesis: true mu is not equal to 0

Warning message:
Cannot compute exact p-value with ties in:
wilcox.test.default(brown$se, lob$se, exact = TRUE)

> wilcox.test(brown$towl,lob$towl)

Wilcoxon rank sum test with continuity correction

data: brown$towl and lob$towl
W = 138845, p-value = 0.002432
alternative hypothesis: true mu is not equal to 0

> wilcox.test(brown$towl,lob$towl,exact=TRUE)

# it gets stuck, although I’m not sure of whether
# this is because of computational load of exact
# test, or because Eros is wasting gollum’s precious
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# RAM with a script called kalimba_de_luna.pl

3.2 More than two samples

• If you need to test for differences among n groups (where n > 2), do not
run two-sample tests for all possible variable pairs.

• By running many tests of the same null hypothesis (that the n groups do
not differ), we increase chances of rejecting it although it was correct.

• In such cases, use One Way ANOVA instead of t-test and Kruskal-Wallis
test instead of Mann-Whitney.
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